Université de Limoges IUT GIM : UE2 AII1

AUTOMATIQUE ET INFORMATIQUE INDUSTRIELLE 1

ELECTRONIQUE DES CIRCUITS LOGIQUES

TD 1: FONCTIONS LOGIQUES

Objectifs:

- Comprendre et manipuler les fonctions logiques.
- Transformer l'expression de fonctions logiques simples.
- Utiliser les différentes représentations d'une fonction logique.

Exercice 1 : Propriété des Fonctions Logiques.

1 - Vérifier (à l'aide de la table de vérité ci-dessous) la propriété de distributivité suivante : x+(y,z)=(x+y).(x+z)

Χ	У	Z	y.z	х+у	X+Z	x+(y.z)	(x+y).(x+z)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

2 - Monter que si E, F et G sont des expressions logiques alors, on a les propriétés suivantes :

$$E + E \cdot F = E$$

$$E.(E+F)=E$$

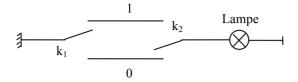
$$E + \overline{E} \cdot F = E + F$$

$$E.(\overline{E}+F)=E.F$$

$$E.F + \overline{E}.G + F.G = E.F + \overline{E}.G$$

$$(E+F).(\overline{E}+G).(F+G) = (E+F).(\overline{E}+G)$$

Exercice 2 : Synthèse des Fonctions Logiques.

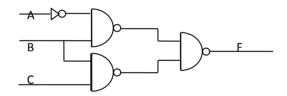

- 1 Réaliser les fonctions PAS, ET, OU, NOR et XOR (OU exclusif) avec des opérateurs NAND.
- 2 Réaliser les fonctions PAS, ET, OU, NAND et XOR (OU exclusif) avec des opérateurs NOR.

Fichier: All1-ECL-TD-1.docx 1/2

Université de Limoges IUT GIM : UE2 AII1

Exercice 3: Etude d'un Circuit Electrique.

On considère le circuit électrique suivant :


1 - Quelle est la fonction d'un tel circuit?

On définit les variables binaires x_1 et x_2 de la façon suivante :

- si l'interrupteur $k_1(k_2)$ est dans la position 1 alors x_1 (x_2) vaut 1
- si l'interrupteur $k_1(k_2)$ est dans la position 0 alors x_1 (x_2) vaut 0.
- La fonction logique L est à 1 si la lampe est allumée.
- 2 Donner la table de vérité de la fonction logique L.
- 3 Exprimer L sous la forme d'une somme de produits puis sous la forme d'un produit de sommes.
- 4 Réaliser cette fonction avec uniquement des portes NAND.

Exercice 4 : Circuit Logique Simple.

On considère le circuit suivant :

- 1 Donner l'expression de la fonction F réalisée.
- 2 Simplifier cette expression en appliquant le théorème de De Morgan.
- 3 En déduire un circuit simple réalisant cette fonction en utilisant les opérateurs NON, ET, OU.

Fichier: All1-ECL-TD-1.docx 2/2